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Abstract 

A data reduction procedure is presented to analyse 
neutron diffraction intensities from low-scattering- 
power systems contained in high-scattering cells. A 
careful analysis of the cell contribution is carried out 
and a numerical program to treat absorption and 
multiple scattering also due to the cell is developed. 

I. Introduction 

The purpose of a neutron diffraction experiment from 
non-crystalline samples is to obtain the static structure 
factor S ( Q )  from the measured intensity. However, 
the scattered neutron flux contains some background 
(scattering from container and environment) and is 
affected by absorption, multiple processes and inelas- 
ticity contributions apart from instrumental effects 
like beam inhomogeneity, counter efficiency and 
resolution. 

In the case of high-scattering-power samples or for 
low container contribution to the total scattered 
intensity, the data reduction can be done by following 
standard procedures like that outlined by Paalman & 
Pings (1962) after a subtraction of the multiple scat- 
tering due to the sample only according to Blech & 
Averbach (1965). On the other hand, when such 
experimental conditions do not prevail, i.e. when the 
container contribution is an appreciable fraction of 
the total measured intensity (over 10%), the simplify- 
ing approximation of a negligible-thickness cell in 
evaluating the multiple scattering no longer holds. 

One of the most widely employed approaches to 
the problem of multiple scattering from the sample 
and /or  the container makes use of Monte Carlo (MC) 
procedures (Bischoff, Yeater & Moore, 1972; Copley, 
1974, 1981; Copley, Verkerk, van Well & Fredrikze, 
1986; Meardon, 1973; Johnson, 1974) which allow 
for a simulation of the real experiment by following 
a given number of neutron histories. By using this 

0108-7673/90/060440-10503.00 O 1990 International Union of Crystallography 



C. PETRILLO AND F. SACCHETTI 441 

technique a typical statistical error of 1% on the total 
scattered intensity is generally acceptable. 

However, in special cases such as diffraction from 
gases at high pressure where the contribution from 
the container exceeds 30% of the total intensity 
(Fredrikze, 1987) or can reach values of 80-90% 
(Bellissent-Funel, Buontempo, Petrillo & Ricci, 
1989), an accuracy as high as 0.1% in the data reduc- 
tion is needed to obtain an accuracy of a few percent 
in the corrected intensity due to single-scattering pro- 
cesses from the sample only. In these cases, the crucial 
point is the subtraction of the cell contribution from 
the measured total intensity since multiple processes 
taking place between sample and cell and into the 
cell itself, although non-negligible, represent in any 
case a modest contribution. 

Having in mind this kind of experiment, we 
developed an ad hoc data analysis procedure with 
the aim o f  minimizing the errors introduced by the 
subtraction of the container and taking into account 
absorption and higher-order scattering processes 
involving the container itself. A numerical simulation 
of the measured intensities has been set up that allows 
for the calculation of proper parameters occurring in 
the analysis procedure, thus obtaining the intensity 
of single-scattering processes in the sample only. By 
such a numerical approach both the cases of isotropic 
and non-isotropic scatterers can be treated; in the 
latter case a rough knowledge of the angular depen- 
dence of the cross section is required as input in the 
calculation. Finally, inhomogeneities of the incoming 
beam with respect to the finite dimensions of the 
sample can be easily taken into account if a model 
for the beam shape is available. 

As a check, the present procedure has been applied 
to the case of standard scatterers for which MC 
(Meardon, 1973; Johnson, 1974) and Blech & 
Averbach (1965) calculations are available. The 
behaviour of the cell contribution and multiple scat- 
tering is discussed for titanium-zirconium and 
vanadium containers as a function of cell thickness, 
sample radius, sample linear attenuation coefficient 
and scattering angle at an incoming neutron 
wavelength of 0.7/~. 

2. Data analysis 

In a neutron diffraction experiment from disordered 
samples, the most widely used geometry is the cylin- 
drical one as no preferred symmetry axis is present 
in the sample. Such a geometry is particularly suitable 
for instance when one studies gaseous or liquid 
samples under high hydrostatic pressures. In the 
present analysis, the container will be assumed to be 
cylindrical in shape and of finite thickness, i.e. a 
non-negligible thickness in terms of attenuation 
effects and multiple scattering within the wall and 
the wall and the sample. The latter is necessary when 

dealing with containers contributing to the total scat- 
tered intensity (sample plus cell) for a fraction greater 
than 10%. In such experimental conditions, a very 
high accuracy in subtracting the cell contribution is 
needed. In particular, an accuracy of 0.1% is 
necessary to obtain a static structure factor affected 
by an error of 1% when the cell contribution is of the 
order of 90% of the total scattered intensity. 

At present, approaches based on MC simulation 
allow for a complete description of the scattering 
problem in such cases. In a recent experiment on 
krypton (Fredrikze, 1987) in which the scattering from 
the cell contributed to 30% of the total intensity, a 
MC technique has been applied to take into account 
the multiple scattering. The attenuation of the sample 
intensity due to the cell was calculated only for single 
scattering, using numerical integration. However, the 
accuracy of 1% in the total scattered intensity pro- 
vided by MC simulation must be carried further, thus 
increasing the computation time if one decides to 
calculate all the corrections using such a technique. 

Moreover, it must be noted that the calculation of 
the intensity due to the cell and the evaluation of 
multiple scattering, in the presence of the sample, 
suffer from various inaccuracies other than the statis- 
tical ones. Indeed the typical wall thickness of the 
container is of the order of 0.1 cm with an accuracy 
no better than a few percent, while the total cross 
sections are known with an absolute error of about 
1%. Therefore the direct calculation of the cell contri- 
bution is expected to have a sizeable error. 

To deal with the above problems, we developed a 
new procedure that allows for handling the data by 
using experimentally measured intensities properly 
corrected by calculated quantities. 

The notation employed throughout the present 
section is reported in Table 1. To simplify the pres- 
entation of the following analysis of the experimental 
data, double-scattering intensities only will be written 
in the formulae without any lack of generality; the 
numerical calculation of the parameters appearing 
in the theory can be done by including higher- 
order multiple-scattering contributions with a small 
increase in the computation time. Moreover, for the 
sake of simplicity, the angular dependence of the 
intensities is not explicitly reported in the following 
relationships. 

In a typical diffraction experiment employing a 
monochromatic beam five sets of measurements are 
performed: scattering from the cell filled with the 
sample, scattering from the empty cell, scattering from 
a full absorber (a cadmium rod having the same height 
as the sample and a radius equal to the external radius 
of the cell), scattering from the environment obtained 
by removing sample and cell, and scattering from a 
vanadium rod having the same height as the sample 
and a radius equal to the internal radius of the cell. 
Neglecting inelastic contributions, the measured 
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Table 1. Experimental an'd calculated neutron scatter- 
ing intensities [see (9) and (10)] and calculated attenu- 
ation and transmission coefficien ts [ see (11 ) and (12) ] 

Intensities given by (10) are written for n = 2 scattering events. 

ioxp experimental intensity from the cell filled with sample. $+c 

I~ xp experimental intensity from the empty cell. 
i~xp experimental intensity from a vanadium standard. v 

I~X~ experimental intensity without sample and container. 
i~xp experimental intensity from a full absorber. abs 

I~ single-scattering intensity from the sample. 
I~ double-scattering intensity from the sample. 
I,~ double-scattering intensity between sample and cell. 
I~, double-scattering intensity between cell and sample. 
I ° single-scattering intensity from the empty cell. 
I°~ double-scattering intensity from the empty cell. 
I~ single-scattering intensity from the filled cell. 
I ~  double-scattering intensity from the filled cell. 
Iv single-scattering ir~tensity from vanadium standard. 
Ivy double-scattering intensity from vanadium standard. 

B I~+~ background intensity for the sample plus cell measurement. 
Iff background intensity for the empty cell measurement. 
Iv B background intensity for vanadium standard measurement. 

B T~+~ transmission of sample plus cell. 
T~ transmission of empty cell. 
Tv B transmission of vanadium standard. 
T~ sample attenuation coefficient accounting for the effects due to 

both sample and cell. 
Tv vanadium standard attenuation coefficient. 

intensities due to the cell filled with the sample and 
to the empty cell can be written respectively as: 

iexp s B s+~= I~+ I,,+ I,¢+ I~+ I~+ l~c+ Is+c ( l a )  

and 

i~xP i 0 + o B = I ~ + I ~ ,  ( lb)  

by assuming that the experimental intensities r~xp X S+C 

and IecxP have already been corrected for detector 
efficiency and normalized to a given value of monitor 
counts. It has to be noted that the intensities appear- 
ing in ( l a )  and ( lb)  contain the appropriate attenu- 
ation as suffered by neutrons in crossing both the 
sample and the cell. Background intensities appearing 
in ( la )  and ( lb)  are given by 

B = T e x p ' j -  T B  / T e x p -  t e x p ~  (2a) Is+c ~ a b s  ~ ~ s + c ~ , ' t  v a c  ~t a b s /  

and 

I~ = Texp TB([exp Texp~ 
~tabs  + - - c  ~ , - v a c  - -  " a b s / "  (2b) 

Provided a numerical estimate of the transmission 
factors appearing in (2a) and (2b) (see the following 
section) as accurate as few in a thousand (apart from 
errors due to sizes and cross sections), subtraction of 

I~+c and I~ is straightforward by using background B z 
the experimental intensities -vaCtexp and "absr~xp- The sub- 
traction of the cell contribution, which is a critical 
point, can be done by defining the ratio between the 

intensities scattered by the cell with and without the 
sample, i.e. 

y = (I~+'Icc)/(Ic+Icc).° o (3) 

By combination of ( lb)  and (3), ( l a )  can be written 
as 

Iexp B s + c - I s + c - y ( I  exp I~)=Is+Iss+Isc+Ics .  (4) 

One may account for the double- (multiple-) scatter- 
ing contributions appearing on the right-hand side of 
this last equation by calculating the ratio (Fredrikze, 
1987) 

m =  lim [(Is:+ I,c+ I.)/(I:)] (5) 
Q--}oo 

at high values of the momentum transfer Q. Introduc- 
ing the multiple-scattering parameter m in (4), the 
intensity from the sample due to single-scattering 
processes only can be written as 

Is r l e x p  B = t-s+c - Is+~ - y(/exp _ I B) ] 

~1- / -exp  B B - m / ( m  + 1 / t - ,+c -  Is+~- Y(l~Xp- i~)]O_.o ° (6) 

where measured quantities are related by the two 
calculated parameters y and m and the transmissions. 

Indeed, y and m have been deduced by a numerical 
calculation of the intensities appearing in the right- 
hand side of ( l a )  and ( lb)  (see § 3) following a 
procedure quite similar to that suggested by Blech & 
Averbach (1965), the main difference arising from the 
inclusion of a cell with finite thickness. In such a way, 
contributions coming from the non-convex volume 
of the container are taken into account thus making 
the full system no more homogeneous. 

It has to be noted that when the ratio 3' is close to 
unity, i.e. in the case of a weak sample, it is affected 
by an error smaller than that in the calculated 
intensities, other errors being negligible. This follows 
directly both from the definition of y and the numeri- 
cal procedure employed in calculating the intensities. 
The error introduced in the subtraction of the cell 
contribution is thus governed by the error in y, which 
can be reduced to 0.1-0.2%, and by the statistical 
error affecting the measured intensity /exp. The 
numerical uncertainty affecting the calculation of the 
background transmissions is a less-critical point con- 
sidering that the scattering from the environment 

T e x p ~  (-vat, and from the absorber (rexp~ "abs J are generally very 
low as compared to the cell and sample scattering. 
A numerical accuracy of about 1% in m is possible, 
even though in the case of a low-scattering sample, 
a rougher estimate of this parameter does not sig- 
nificantly increase the error in the single-scattered 
intensity I, [(6)]. It should be noted that, while the 
error in y is dominated by that in the calculated 
single-scattering intensities, which are greater than 
the multiple ones, the error in m is related to that in 
multiple-process intensities which are known less 
accurately. 
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The single-scattering intensity given by (6) still 
contains the attenuation of the neutron beam due to 
the cell walls and to the sample at different angles. 
Such an attenuation factor can be calculated numeri- 
cally as in the case of background transmissions. 

From the intensity corrected for the attenuation, 
the differential cross section can be obtained by nor- 
malization to the vanadium standard as 

do/dO=(do/dg2)v ( I sTv) / ( IvT~)  (7) 

where (do-/dl-/)v = incr, inc trV /,~Tr, trv being the incoherent 
cross section of vanadium. Iv is deduced by the 
measured intensity on the vanadium rod by applying 
the same procedure leading to (8) which in this case 
is written as 

Iv= r~xp- I~,-  mv/ (mv+ l )[ I~cXp- I~ , (8) 

where Iv =rexp~ ' rnrrexp-rexp~ and mv I w / I v .  ~ t a b  s ~ ~t V k ~ t  v a  c . t a b s /  = 

exp and rexp have the same meaning as in the case v a c  ~ a b s  

of the sample except that the cadmium rod should 
have the same radius as the vanadium rod, i.e. the 
inner radius of the cell. The evaluation of Iv as given 
by (8) can be compared directly with that obtained 
using other procedures (Paalman & Pings, 1962; 
Blech & Averbach, 1965; Meardon, 1973) and thus 
one can obtain more information on the validity of 
the present approach. 

3. Numerical calculation and discussion of the errors 

As seen in the previous section, the parameters 
appearing in the data analysis are 3/, which appears 
in the cell subtraction, m, the multiple scattering 
factor, background transmissions and sample attenu- 
ation. Evaluation of these parameters implies the 
calculation of single- and multiple-scattering 
intensities entering in the diffraction experiment. 

In Fig. 1 a section of the cell perpendicular to the 
cylinder axis is presented showing all single-scattering 
processes which can take place in the sample or in 
the cell, L1(r) and LF(r) being the path lengths of 
the incoming and scattered neutron beams. Such path 

2 ~  

(a) 

. . . . .  . . . .  

(b) (c) (d) 

Fig. 1. Section of the cell perpendicular to the cylinder axis show- 
ing all single-scattering processes taking place (a) within the 
sample and (b), (c), (d) within the cell wall. 

lengths are functions of the point coordinate r, as 
they are the sum of paths within the cell and /o r  the 
sample. The origin of the coordinate system is fixed 
at the center of the cylinder with the z axis along the 
axis of the cylinder. 

Assuming a unitary incoming neutron flux J0, the 
total intensity for single scattering and for multiple 
scattering of order n (n > 1), in neutrons per solid 
angle and unit time, can be written respectively as 

I~=N~(do' /dO),~  ~ d r e x p ( - X ~ - X F ) ,  (9) 
v~ 

fI[ I~1 ..... = N~,,(do'/dO)~,i I dr, l /  I-I L~ 
i=1 v~i j=l  

( )] xexp - X ~ - X F -  Y~ Xk , (10) 
k = l  

where the index a refers to the sample or the cell 
and V~ is the corresponding volume. N~ is the number 
density and (do-/dI2)~ the differential cross section. 
Xt and XF are the path integrals of the total linear 
attenuation coefficient along Lt and LF respectively 
and X, is the integral along the path L, between ith 
and ( i+  1)th events. Of course in the calculation of 
the path integrals the variation of the linear attenu- 
ation coefficient across the boundaries is taken into 
account. Equation (10) is the exact integral form of 
the transport equation for the neutron flux due to 
n-scattering processes (Sears, 1975). In Fig. 2, for the 
sake of simplicity, all the possible double-scattering 
events taking place in the system cell plus sample are 
shown. 

2~ 

(a) 

. . . .  

(b) (c) (d) (e) 

_ _  _ 2 ~  . . . .  

( f )  (g) (h) (i) 

(l) (m) (n) (o) 

Fig. 2, Section of the cell perpendicular to the cylinder axis show- 
ing all double-scattering processes taking place (a) within the 
sample, (b), (c), (d), (e) between sample and cell and (f), (g), 
(h), (i), (l), (m), (n), (o) within the cell. 
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Finally, the factor taking into account the attenu- 
ation suffered by the neutron beam during the single- 
scattering process at the different scattering angles 
can be written as 

T=I/V,~ ~ d r e x p ( - X ~ - X F ) .  (11) 
v~ 

These quantities, which contain an angular depen- 
dence, are the ratio between the measured intensities 
and the theoretical ones, and define both a sample 
and a cell factor accounting for the attenuation during 
the scattering processes shown respectively in 
Fig. l (a)  and in Figs. l (b ) - (d) .  We note that the 
present definition of sample and cell attenuations is 
the same as that of the cylindrical absorption factors 
as given by Paalman & Pings (1962): the sample 
attenuation is the coefficient called As.so, while the 
cell attenuation is the A~.sc coefficient, meaning 
respectively absorption factor for scattering in the 
sample with absorption in both sample and cell and 
absorption factor for scattering in the cell with 
absorption in both the sample and cell. 

The background transmission of the filled or empty 
cell can be calculated, as usual, by using the following 
relationship: 

R c 

T~=I/(2Rc) ~ dyexp[-X(y)] (12) 
- -  R c 

where X(y) is the appropriate path integral of the 
total linear attenuation coefficient along a straight 
line parallel to the direction of the incoming neutron 
beam and Rc is the cell radius. Although in principle 
(12) differs from (11), the use of the latter at zero 
scattering angle yields results numerically very close 
to those calculated from (12) in most cases. 

The calculation of the quantities given in (9) and 
(11) implies an integration over three dimensions, 
immediately reducible to two, while an integration 
over 3n dimensions is required in (10). In addition, 
linear attenuation coefficients and path lengths pres- 
ent in these equations must be evaluated by taking 
into account the medium discontinuity in crossing 
the boundary between the cell wall and the sample. 
Path lengths associated with multiple processes can 
easily be calculated by searching for the interception 
points between the straight lines of the neutron path 
and the cylindrical surfaces of both the cell and the 
sample. 

The calculation of these integrals can be afforded 
by using a MC integration procedure in which a 
random sampling of the integration volume is per- 
formed. Such a MC procedure should, however, be 
considered with some care. The first problem which 
arises in performing integrals in 3n-dimensional 
space by using the MC method is that the correlations, 
always present in random-number-generator routines 
(Press, Flannery, Tenkolsky & Vetterling, 1986) pro- 
duce a non-uniform sampling of the appropriate 

volumes. Moreover, the absolute accuracy of 0.1% 
seems to be too high a demand. To deal with these 
problems, it must be observed that the highest 
accuracy should be obtained for the y coefficient 
which is an intensity ratio. Therefore, a small error 
in y can be obtained if the numerator and 
denominator errors cancel each other. To establish 
this condition, the integrations over the cell volume 
necessary to calculate the I~, I~c, I °, I°c terms have 
been performed by using a fixed random sampling 
of such a volume. In this way the error due to the 
limited number of points used in the MC procedure 
is reduced when the intensity ratio is considered. 
Indeed, if Ae is the relative error in estimating I ° or 
I~, the error in estimating y is Ay --~ Ae(1 -- y) so that, 
when y is not far from unity, the error in it is appreci- 
ably reduced compared with the result obtained when 
the integrals are evaluated as independent quantities. 
In addition, when y is small compared with 1, the 
contribution of the cell to the total scattered intensity 
is smaller and the accuracy of y need not be so great. 
The above argument also holds when we consider the 
angular dependence of all the quantities or when 
different samples having the same size are considered, 
that is the ratio of two intensities produced by the 
present procedure is much better defined than the 
intensities themselves. Finally, in order to reduce the 
systematic errors due to the correlation introduced 
by the random-number generator, we used several 
independent random sequences in carrying out each 
integration. 

To perform the 3n-dimensional integration 
necessary to determine the multiple-scattering contri- 
bution, we sampled randomly the ( n - 1 )  distances 
between the n points inside the integration volume. 
In this way, the required computation time is almost 
the same for single as well as for any order multiple 
scattering, although the relative error on each integral 
increases with the order of the process. Thus, using 
the present approach, each scattering order gives an 
almost constant contribution to the total error. The 
accuracy on each intensity term can obviously be 
improved by increasing the number of points ran- 
domly drawn inside the volume. As a consequence 
the statistical error on m and y can progressively be 
reduced. Several trials have been done by varying the 
number of points in the integration volume from 105 
to 5 x 106. It was found that, for more than 5 x 105 
points, convergence of the single-scattering intensity 
values is reached with relative variations of 0-2% from 
the asymptotic result. By using 2 x 10 s points, statis- 
tical errors in y and m are about 0.1-0.2% and 1% 
respectively when the linear attenuation coefficient 
of the sample is not too high. This result can be 
considered rather satisfactory and it is attainable with 
a relatively small computation time. The computer 
time has been estimated by using an IBM 3090 system 
and it was found that all the integrals contributing 
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Table 2. Linear  at tenuation coefficients employed in 
the calculations; p~sc°' = ~vtr'T scot ana" ~abs = lVO'7"r abs, N 
being the number  density, cr scat and  cr abs being respec- 

tively scattering and  absorption cross sections 

/if scat ( c m - l )  /flabs ( c m - l )  /tj abs ( c m - l )  /tj abs ( c m - 1 )  

X =0.7A A=IA A=10A 
V 0"357 0" 144 0"206 2"06 
Ni 0"386 -- 0"00 0"00 
Ti-Zr 0.254 0.086 -- -- 

to second-order scattering could be calculated in 
10-4s of central processing unit (CPU) time per 
sampled point. This implies 1 min CPU time for 5 x 
10 6 points per integral. A further check of the numeri- 
cal accuracy of  the results has been done by carrying 
out the calculation in a double-precision definition 
of all the relevant variables. By using the same fixed 
random sampling of the integration volume, no vari- 
ation in changing from single to double precision has 
been found. Finally, the computation procedure has 
been checked in cases when an analytical integration 
can be carried out. It was found that numerical and 
analytical results were equal within 0.2-0.4%, using 
105 points in the integration volume, as expected from 
the other checks we have performed. 

A "0 

E 

0-6- 

0.4_ 

0.2_ 

9'0 180 

20 (deg) 

(a) 

4. Resu l t s  and discuss ion  

Firstly, results on standard scatterers obtained by 
running the present numerical program have been 
compared with those by other approaches. Typical 
tests, already used in MC simulations (Meardon,  
1973), are the vanadium rod and a hypothetical 
sample having the incoherent cross section of nickel 
and no absorption. In Table 2, linear attenuation 
coefficients related to scattering (/./,scat) and true 
absorption (/x abs) cross sections employed as input 
of present calculations are reported. In Figs. 3(a)  and 
(b), results from these two cases are shown in com- 
parison with MC data (Meardon, 1973) and, as we 
can see, the overall quantitative agreement is very 
good. Because of the integration method we 
employed, our data do not exhibit random fluctu- 
ations which are instead present in the MC ones, 
though the computation time is of the same order of 
magnitude in both the approaches. 

The present program can also be employed to 
reproduce the Blech & Averbach (1965) calculations 
of the coefficient ~ for secondary scattering which is 
defined as 

f~=(o- t° t /2) / (o-scat l l ) ,  

O "scat and O "t°t being the scattering and total cross 
sections of the homogeneous cylindrical system 
respectively. In Blech & Averbach (1965), such a 
coefficient is calculated under the assumption of 
isotropic scattering, which implies the substitution 
do'/d/2--> o'/4~r, by taking a series expansion of the 

"W 
t -  

t -  

t o  

t -  

.c_ 

0 90 180 
20 (deg) 

(b) 

Fig. 3. (a) Differential cross section of a vandanium rod obtained 
by present approach (full line) as compared with MC results 
(dots) (Meardon, 1973). Starting from the lowest curve, data 
refer to the total differential cross section at A = 10/~, single- 
scattering and total differential cross sections both at A = 1 A,. 
(b) Scattering intensity of a nickel rod with no absorption 
obtained by the present approach (full line) as compared with 
MC results (dots) (Meardon, 1973). The upper curve is the total 
intensity while the lower one is the single-scattering intensity. 
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integrands in (9) and (10) and averaging over the 
scattering angles. Though such an approximation is 
not too severe when the total linear attenuation 
coefficient /z=/xscat+/z abs is not too high, it has 
already been recognized (Meardon, 1973) that 8 is a 
slightly decreasing function of the scattering angle as 
a consequence of the fact that I t is an increasing 
function of the scattering angle while 12 is almost 20(°) 10 
constant. In Fig. 4, 8 by Blech & Averbach (1965) /z (cm -') 
and by the present calculation is shown as a function 0.1 ll.0 
of the scattering angle at the values /zR =0 .5  and 0.2 16.3 

0.3 21.1 
R / h  =0.2  (R and h being radius and height of the 0.4 25.6 
cylinder). 0.5 29.8 

The behaviour of 3' and m defined by (3) and (5) 0.1 14.3 
has been investigated as a function of (a) the scatter- 0.2 22.5 

0"3 29.6 
ing angle 20, (b) the linear attenuation coefficient of 0.4 35.9 
the sample /z, (c) the cell thickness t and (d) the 0.5 41.4 
sample radius R. Two different values of the linear 0.1 16.9 
attenuation coefficient of the cell, corresponding to 0.2 27.1 

0.3 35.6 
vanadium and Ti-Zr  null-matrix alloy, have been 0.4 42.6 
chosen (see Table 2). The linear attenuation 0.5 48.6 
coefficient /z of the sample has been evaluated by 
assuming a zero absorption cross section, the attenu- 
ation thus being due to scattering processes only. The 20(°) 10 

calculations have been carried out at an incoming ~, (cm-') 
neutron wavelength of 0.7/~ by fixing the height h 0.1 9.61 

0.2 14.9 
of the cylinder ( h = 5  cm) and assuming isotropic 0.3 19.8 
scattering and a homogeneous beam. In each case 0.4 24.4 
2x105 points within the integration volume were 0.5 28.6 
employed. Results for m and 3' are reported in Tables 0.1 13.1 

0.2 21-3 
3 and 4. As we can see from Table 3, m shows quite 0.3 28.5 
a smooth dependence on bo th / z  and 20. In Fig. 5, 0.4 34.8 
the behaviour of m as a function of the scattering 0-5 40.4 
angle is reported at different values of/z for two R~ h 0.1 15.8 

0"2 26.1 
ratios in the two cases of vanadium and Ti-Zr  cells. 0-3 34.5 
A definite angular dependence of m is seen when o.4 41.6 

0.5 47"6 

Table 3. Double-scattering parameter m (%) at 
different values of  the scattering angle, the sample 
attenuation coefficient tz, at two values of  the cell thick- 
ness t and three R~ h ratios, for vanadium and Ti-Zr  

t= 

cells 

V a n a d i u m  cell 
0.05 cm t = 0-1 cm 

50 100 10 50 100 

11"0 11"0 15"3 15.3 15"3 
16"3 16"3 20"3 20.3 20-3 
21.2 21"1 24"9 25.0 24-9 
25"7 25.6 29"2 29-3 29"2 
30"0 29"7 33"3 33"4 33-1 

14"3 14"3 18"2 18"2 18"2 
22"5 22"4 26"3 26.3 26"2 
29"7 29"4 33"3 33"3 33-1 
36"0 35"4 39"5 39"6 39"0 
41 "6 40"6 45"0 45"2 44.1 

16-9 16"9 20-4 20"4 20-4 
27"1 26"9 30"4 30"5 30"2 
35"6 35"0 38"8 38-8 38"2 
42-7 41 "5 45"8 45"8 44-6 
48"7 46"8 51"8 51"8 49"8 

T i - Z r  cell 
t = 0 . 0 5  cm t =0 .1  cm 

50 100 10 50 100 

R/h=O.1 

R/h =0.2 

R/h =0-3 

9.61 9.61 12.8 12.8 12.8 
14.9 14-9 17.9 17.9 17-8 
19.8 19.7 22.6 22-6 22.5 R/h =0.1 
24.5 24.3 27.0 27.0 26.8 
28.8 28-5 31.0 31-1 30.8 

13.1 13.1 16.0 16.0 16.0 
21.4 21.3 24.1 24.2 24-1 
28-6 28.3 31.3 31.3 31.0 R/h=0.2 
34-9 34.4 37.5 37.6 37-0 
40-7 39.7 43.1 43-2 43-2 

15.8 15"7 18.4 18"4 18.3 
26.1 25.9 28.5 28.6 28.3 
34.6 34.1 37.1 37-1 36-4 R/h =0.3 
41.8 40.6 44-0 44.1 43.0 
47.9 45.7 50.2 50.2 48.0 

0-4. 

0.3. 

0"2 
0 9() 180 

20 (oeg) 

Fig. 4. Coefficient  for  s econda ry  scat ter ing 8 as a func t ion  o f  the 
scat ter ing angle,  ca lcula ted  for  a cylindrical  sample  h a v i n g / z R  = 
0.5 and  R / h  = 0 . 2 .  The  full line is by Blech & Averbach  ~1965). 

/z > 0.1 in the whole range of R / h  we have studied; 
in particular, m shows a maximum at intermediate 
values of the scattering angle. Finally, it should be 
observed that m is dependent on both/x scat and /z  abs, 
the relevant parameter being however the total/z.  As 
has been stated, the present results are obtained for 
a non-absorbing sample but they can easily be gen- 
eralized to the non-zero absorption case by studying 
the dependence on/x of the higher order intensities 
[see (10)]. Indeed, the following relationships 
hold for instance in the case of double-scattering 
processes: 

iss([d, abs; //,scat) = [~,sca, / (~,abs + ~,sca,)]2 

x I~(0;/.Labs+ ]./,scat) (13a) 

L,(tza~; ~,scat) = sca  7 ( a ~ s +  scat) 

x/~(0;/z~b~ + tZscat ) (13b) 

L c (  abs; ].~ seat) ~_ L c ( O ;  ] .Labs+ ]£seat) (13c) 
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Table 4. y coefficient at different values of the scattering 
angle, the sample attenuation coefficient Ix, at two values 
of  the cell thickness t and three R~ h ratios, for vanadium 

and Ti-Zr  cells 

Vanadium cell 
t =0 .05  cm t = 0 . 1  cm 

20( ° ) 10 50 100 10 50 100 
/z (cm -1) 

0.1 0.943 0.943 0.945 0.945 0.947 0.950 
0.2 0.890 0.891 0 -896  0.895 0.898 0.905 
0.3 0.842 0.844 0.852 0.849 0.853 0.864 
0.4 0-797 0.800 0.812 0.807 0 .811  0.827 
0-5 0.756 0.760 0.776 0.768 0.773 0.794 

0.1 0.883 0.886 0 .891  0.887 0.890 0-897 
0.2 0.784 0.789 0.804 0.791 0.798 0.814 
0.3 0.699 0.708 0.733 0.710 0.719 0.746 
0.4 0.627 0.638 0.675 0.640 0.653 0.691 
0.5 0.565 0.579 0.627 0 .581  0.596 0.646 

0.1 0.829 0.834 0.845 0 .831  0.837 0.851 
0.2 0.694 0.705 0.732 0.698 0 .711  0.742 
0.3 0.588 0.604 0.648 0.594 0.613 0.662 
0.4 0.503 0.524 0.586 0 .511  0.535 0.602 
0.5 0-435 0.462 0.540 0.446 0.475 0.557 

R/h =0.1 

R/h =0.2 

R/h =0.3 

T i -Zr  cell 
t = 0.05 cm t = 0-1 cm 

20( ° ) 10 50 100 10 50 100 
(cm - t )  

O. I 0,943 0,944 0-945 0,947 0.947 0,950 
0.2 0,891 0 -892  0,896 0-898 0,899 0,904 
0.3 0,843 0.845 0.851 0.852 0.854 0,863 
0,4 0-799 0 .801  0 , 8 1 1  0 .811  0.813 0,827 
0-5 0,758 0,761 0-775 0,772 0-776 0.793 

0.I 0,885 0,887 0 .891  0,889 0 .891  0.897 
0.2 0,787 0-791 0,804 0-795 0,799 0,813 
0.3 0.703 0,709 0-732  0,715 0-722 0,745 
0.4 0,632 0.640 0,674 0.647 0,655 0,689 
0.5 0,571 0 .581  0,627 0.589 0,599 0,644 

0.1 0,831 0.835 0.844 0.834 0-839 0,850 
0.2 0.698 0,706 0 .731  0.704 0,713 0-740 
0-3 0,592 0,606 0,648 0 .601  0.615 0,659 
0-4 0.508 0,526 0 -586  0,520 0.538 0,599 
0.5 0.441 0 -464  0.539 0.455 0.478 0.553 

R/h =0.1 

R/h =0.2 

R/h =0.3 

where the left hand side of these equations gives the 
intensities for the absorbing sample. 

We can see from Table 4 that 7 exhibits uniform 
trends as a function of all the parameters so that 
reasonable estimates can also be derived by interpola- 
tion for cases other than those reported in the tables. 
It must be remarked that y is independent of the ratio 
Ix scat/ ix abs of the sample, as can be seen from (13c). 
In Figs. 6(a)  and (b), y versus the scattering angle 
is plotted at different values of Ix and R / h  for the 
two cells. It is seen from this figure that T increases 
monotonically as a function of scattering angle in the 
examined range. In Fig. 7 present values of 3' as a 
function of IXR in the case of the vanadium container 
are shown in comparison with the results obtained 
in the ' thin-walled' limit (Fredrikze, 1987). Examining 
this figure in the region of interest (IXR < 0 . 2  and 
0 .8<  7 <  1), appreciable disagreement between the 
two calculations is found (differences up to 3%) when 
the sample radius is not too large. 
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Fig. 5. Double-scattering coefficient m (%) as a funct ion of  the 
scattering angle at several values of  the sample a t tenuat ion 
coett~cient /z and for two R/h ratios. (a)  Vanadium cell of  
0.05 cm thickness; (b) T i -Zr  cell of  0-10 cm thickness. 
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The effect of the transv6rse shape of the incoming 
beam on y has also been analysed. We calculate y 
by assuming a Gaussian-shaped beam having a full 
width at half maximum W such that W/R=2. 
Results are shown in Fig. 6(b) in comparison with 
those obtained in the case of a homogeneous beam. 
The most important conclusion we can make from 
this figure is the enhancement of the angular depen- 
dence of y due to the finite width of the beam. 
Therefore, when an accurate data analysis is needed, 
such an effect has to be taken into account by a proper 
measurement of the beam profile. 

The dependence of the two parameters 3' and m 
on the height of the cylinder has also been investi- 
gated. Calculations have been done by fixing the 

0.75 0"75 

R/h =0.1 R/h =0.2 

1.0 1.0 
7 

20 (deg) 

(a) 

0.5 0.5 

0 50 100 0 50 100 

1.0 

7 

1.0. 

0.75_ 

R/h =0.1 R/h =0.2 

s 0'75 

0.5 

20 (deg) 

(b) 

0.5 
J i ,_ 

0 50 100 150 0 5'0 100 150 

0-5 

Fig. 6. y coefficient as a function of  the scattering angle at several 
values of  the sample attenuation coefficient/~ (0.5, 0-4, 0.3, 0.2, 
0-1 starting from the lowest curve) and for two R/h ratios. (a) 
Vanadium cell of 0-05 cm thickness; (b) Ti-Zr cell of 0-10era 
thickness. For comparison purposes y as calculated for a 
Gaussian beam having W = 1 cm at R~ h = 0.1 and W = 2 cm at 
R/h = 0.2 is shown (dashed lines). 

radius of the sample (R = 1 cm) in the case of the 
vanadium cell having two different thickness values 
(t =0.05 and 0.10 cm). As an example, we report in 
Tables 5(a) and (b) results obtained at the scattering 
angle 2 0 = 50 ° and at three values of the linear attenu- 
ation coefficient of the non-absorbing sample. Effects 
of non-zero absorption can be taken into account by 
referring to (13a)-(13c). As expected, m shows a 
marked dependence on the height of the specimen 
(Blech & Averbach, 1965), while only a weak depen- 
dence is found for y. 

Finally, we have treated the case of a non-isotropic 
scatterer to investigate the effect due to deviations 
from isotropy on the parameters y and m. A simula- 
tion of a gaseous sample of krypton at a pressure of 
about 100 MPa has been done by using the Percus- 
Yevick approximation in order to deduce a static 
structure factor as input to the calculation. A Ti-Zr 
cell having 1 cm internal diameter and 0.2 cm wall 
thickness was employed in the simulation. For pur- 
poses of comparison, the same sample has also been 
investigated with the hypothesis of isotropic scatter- 
ing. In view of the present numerical procedure, the 
two sets of data can be compared safely and what we 
found is that the isotropic approximation gives a good 
description of both y and rn within the present 
accuracy (0.1%). Therefore it can be generally 
employed for a wide class of scattering problems 
without any special care. 

The data reduction and the numerical procedure 
we have described have already been successfully 
applied to the analysis of neutron diffraction from 
gaseous Xe and He-Xe mixtures contained in a Ti-Zr 
high-pressure cell (Bellissent-Funel, Buontempo, 
Petrillo & Ricci, 1989). 

I I I I I 

0 0.5 

/zR 

Fig. 7. y coefficient versus I~R at zero scattering angle and at three 
values of  the vanadium cell thickness: t =0-05 cm (Q); t = 
0.10 cm (V); t = 0-20 cm (&). The full line is the result obtained 
in the 'thin-walled' limit (Fredrikze, 1987). 
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Table 5. Calculated parameters versus the sample 
height (h), at a fixed radius R = 1 cm, at different 
values of  the sample attenuation coefficient tz and at 

two values of  the vanadium cell thickness t 

Results refer to the scattering angle 20 = 50 °. (a) Double-scattering 
parameter m (%); (b) y coefficient. 

(a) Vanadium cell; double-scattering parameter m 
h (cm) 

/x (cm -1) 1 3"33 5 10 

0.1 8.34 12.9 14.3 16.3 
0.3 18-3 27.1 29.7 33.8 
0.5 26.4 38.1 41.6 47.6 

0-1 10.4 16.5 18.2 20.8 
0.3 20-3 30.4 33.3 37.9 
0.5 28.4 41.3 45.2 51.7 

(b) Vanadium cell; y coefficient 
h (cm) 

/z (cm -x) 1 3"33 5 10 

0.1 0.887 0.886 0.886 0.885 
0.3 0.710 0.708 0.708 0.706 
0.5 0.582 0.580 0.579 0.578 

0-1 0.892 0.891 0.890 0.889 
0-3 0.722 0.720 0.719 0.717 
0.5 0.600 0.597 0.596 0.594 

t = 0.05 cm 

t =0.10cm 

t = 0.05 cm 

t=0-10cm 

The present program will be made available to 
interested parties on request. 

The authors wish to thank the referees for helpful 
suggestions in order to improve the presentation of 
this paper. One of us (CP) thanks F. P. Ricci for 
having suggested the problem. 
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Abstract 

It is shown theoretically that the contrast of syn- 
chrotron white-beam topographs, in most cases, is 
the superposition of the intensities produced by inco- 
herent point sources situated on the entrance surface 
of the crystal. This is the reason for the similarity 
between synchrotron topographs and laboratory 
translation topographs. It is a consequence of the 
spectral width of the radiation and of the particle 
beam size and divergence in the storage ring. Upper 
and lower bounds are given for the coherence length. 
The natural collimation of synchrotron radiation and 
the effect of the source-to-crystal and crystal-to-film 
distances are taken into account. The results are valid 
for a large class of synchrotron sources. 

0108-7673/90/060449-11 $03.00 

I. Introduction 

Synchrotron white-beam topography is an attractive 
technique for the investigation of crystal defects. 
Some of its advantages over laboratory topographs 
are imaging of large areas without moving the crystal, 
and shorter exposure times due to the high intensity 
of the beam. Many reflections can be recorded simul- 
taneously, and the whole crystal always gives rise to 
an image, even when it is curved or highly distorted, 
due to the wide wavelength spectrum. 

But synchrotron radiation is rather different from 
laboratory characteristic line radiation. Also, the dis- 
tance between source and crystal differs by about two 
orders of magnitude from laboratory arrangements. 
This raises the question of the interpretation of the 
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